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Abstract

We developed text-generation models, including the
RNN, decoder stack, encoder-decoder, and fine-tuned GPT-
2, to emulate Professor Kao’s lectures. Through experi-
mentation, we found that finetuning GPT-2 led to a model
that outperformed all others. However, given the lim-
ited dataset, the trained-from-scratch decoder stack per-
formed surprisingly well. Our results offer insights into the
strengths and limitations of various text generation models,
aiding researchers in selecting the most suitable model for
their needs.

1. Introduction

Recently, text-generation machine learning models have
become increasingly popular, advanced, and large. How-
ever, it may be challenging to determine which model is
optimal for a specific task. The goal of this project is to de-
velop various text generation models to emulate Professor
Kao’s lectures from ECE C147 and other courses. We op-
timized and compared 4 different architectures used widely
for text generation tasks: RNN, Transformer decoder stack,
Transformer encoder-decoder stack, and finetuning GPT-2.

2. Results

We train and test four models, (1) RNN, (2) Transformer
decoder stack, (3) Transformer encoder-decoder stack, and
(4) fine-tuned GPT-2. See Table [2] for an overview of the
models and Appendix [B] for details. We evaluate the per-
formance of our models based on relative comparison. See
Section [3.1] for why. See Table [T|for the standard prompts
and corresponding outputs for each model. Particularly,
we test three types of prompts (three each), (1) question
prompts, where we expect the model to provide an answer,
(2) generation prompts, where we expect the model to con-
tinue the prompt, and (3) miscellaneous prompts, where we
test the model’s generalization performance.

2.1. RNN

We notice that the RNN outputs complete words because
our RNN architecture relies on next-word level prediction
and thus guarantees word-level coherence. Some phrases
are sensical clauses, thus it is evident that the RNN some-
what learned how to string words together. However, the
RNN output lacks complete sentences and logical reason-

ing. This may be an implication that (1) next-word level
prediction is suboptimal, and/or (2) the RNN architecture
(LSTM + MLP) is not enough to learn inter-word coher-
ence.

2.2. Decoder Stack

The deKaoder™ (decoder) stack was able to recreate co-
herent words from the transcript and short phrases that made
logical sense. The sentences, however, were seemingly
composed of a random mix of phrases that did not make
sense when put together. The larger the window we looked
at, the less sense the body of text made. We can see that
the model was focusing more on grammatical similarity and
not as much on semantic similarity, as when prompted with
a phrase such as “Welcome to Class” it would often con-
tinue the phrase as “Welcoming to Classifying models...”
and change the word to a semantically different word with
a similar spelling. This lack of understanding of semantic
meaning is almost certainly because the model was trained
on a small amount of data and did not have enough parame-
ters to gain a semantic understanding of language in the way
that large language models built using the same architecture
do.

2.3. Encoder-decoder

For the Q&A prompts, the encoder-decoder model gen-
erated relatively correct-looking words common from the
transcript, such as “gradient” and “propagation,” along with
words close enough to English such as “mistribution.” It
also seems to be able to imitate basic English grammar.
However, the model is often incoherent on the sentence
level, producing outputs that look plausible at first glance
but does not withstand any level of scrutiny nor are corre-
lated to the prompt.

Interestingly, the model performs much more poorly on
the generation and miscellaneous prompts. This is likely
because these prompts are below 256 characters (the se-
quence length that the models are trained on), as when ‘left-
padding’ the prompts with sections of the Q&A prompts,
the model starts generating plausible text, though still un-
related to the prompts. This indicates that the encoder-
decoder has overfitted to the training data, where, instead
of extracting information from the prompt to complete it, it
simply imitates the prompt, hence performing poorly when
the prompt is much shorter than expectecﬂ

INote that we only show the results from the duplicate inputs and not



2.4. Fine-tuned GPT-2

GPT-2 (fine-tuned) actually generates text in a tone
that resembles professor Kao with surprising grammatical
accuracy. However, it is not quite logically coherent and
performs poorly on question and answering. Specifically,
the model is unable to make use of the context of the
prompts and generate text logically related to it.

GPT-2 (Q&A + fine-tuned), on the other hand, gives cor-
rect answers in question and answer somewhat consistently.
However, the answers generated are short answers, mirror-
ing the labels of the SQUAD dataset more so than how pro-
fessor Kao would answer questions. This is likely due to
resource constraints, namely the size of the model, and the
size of our dataset. Additionally, this version of the model
performs poorer than the above on the text completion and
miscellaneous generation tasks. In particular, the model
tends to repeat the same words and is less grammatically
and logically coherent than its previous iteration. This is
likely due to the lower learning rate used, but the tradeoff
is that it does not overfit on professor Kao’s data and is still
able to somewhat effectively answer questions. Because of
space constraints, the generated outputs are not displayed in
Table[1] See the table’s caption for instructions on how to
find them if you are interested.

3. Discussion
3.1. Evaluation

One challenge we encountered was benchmarking and
comparing the models. We tried using quantifiable meth-
ods including Rouge score and BLEU score [[1][2]], which
measure similarity between sample sentences and the out-
put. However, this encourages overfitting in our case. As
a result, Professor Kao advised using relative comparison
for models. Note that human evaluation is a valid approach,
and is used in reputable papers (see Fu et al. [3]).

Looking at the results of our models, we can see that the
Encoder-Decoder model produced the least comprehensible
results. The Decoder Stack was able to produce (mostly)
grammatically correct characters; however, the sentences
did not make logical sense, they were grammatically cor-
rect phrases stitched together based purely on grammatical
similarity. That being said, the Encoder-Decoder stack and
Decoder stack were trained on character embeddings and
thus the fact they were able to coherently produce words
from the transcript is a sign that the training was reasonably
successful and the models were learning the structure in the

the split inputs model in Table[I] as the former seems to generate slightly
more coherent text and words than the latter. This is likely because splitting
the input prompt in half does not create a robust source-target pair that has
semantic relations, so even more the split inputs model makes more sense
for Transformers, it does not perform as well.

text at the very least. The RNN was producing reasonable
results, and since it was trained on word embedding it was
able to produce correct words from the get-go. However,
this also meant that the model was not able to generate any
new words that were not in its initial vocabulary, limiting
its ability to generalize to novel prompts. This also means
that prompts containing words not in the training data may
lead to poor generations as the embeddings for those words
are not fine-tuned. The best-performing model by a large
margin was the fine-tuned GPT-2 model which was able to
produce the most coherent outputs.

These results indicate that transformers need lots of pre-
training to be able to perform well as language models. Be-
cause of this, due to hardware, time, and financial limita-
tions, we were unable to train a transformer model from
scratch that can learn the semantic meaning in language
well enough to be able to produce logical-sounding sen-
tences, which also explains all our models’ poor perfor-
mances on question and answering.

3.2. Implications

It is evident from the results why RNNs, especially
next-word prediction RNNs, are no longer used for text-
generation; the results from this next-word prediction RNN
are not coherent. On the other hand, the decoder stack can
generate novel text by sampling from the predicted proba-
bility distribution, thus it can recognize new words, unlike
the RNN. The decoder can generate text that is similar to
the input, but also novel and unpredictable. It is evident
qualitatively that the GPT-2 models perform the best. Un-
fortunately, this implies that the largest contributing factor
to the performance of language models is the size of the
model and, perhaps most importantly, the size of the data.
This conclusion is also echoed by Hoffmann et al. [4] and
many other subsequent money-burning LLMs.

4. Limitations

Overall, we observed the following limitations. (1) Lim-
ited scope of models: we only tested four models, which
does not cover all possible text generation models. (2) Lim-
ited data and model size: our models were trained on a lim-
ited amount of data and were also constrained by limited
computational resources. (3) Evaluation: We considered
different evaluation approaches, but ultimately used rela-
tive comparison which may not be the most ideal method
(refer to Section [3.I). (4) Reproduction: different train-
ing datasets, model parameters, and evaluation metrics may
produce different results. (5) Financial: Even smaller lan-
guage models such as NanoGPT were trained on better
GPUs like the Nvidia A100, which we could not procure
due to budgetary constraints.
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One of the reasons to prefer small kernel sizes
over larger ones is that smaller kernels have fewer
parameters than larger ones, which can reduce the
model’s complexity and computational require-
ments. This can lead to faster training times and
lower memory requirements. What are the bene-
fits of using smaller kernel sizes in CNNs?
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First off, because it’s de facto standard for neural
networks today. We didn’t want to have a hard-on
for the performance or the training because it’s the
de facto standard for neural

The of residual i in
ResNet led to much deeper networks being trained
than previously possible. This allowed for much
better performance on difficult computer vision
tasks, such as image classification, object detec-
tion, and semantic segmentation. In fact, ResNet
achieved state-of-the-art performance on the chal-
lenging TmageNet dataset, reducing the error rate
by a significant margin compared to previous ap-
proaches. Why was ResNet such a big break-
through in computer vision?
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So remember, when we’re doing classification
we're trying to find structure in the data, which
comprises the first-order, the second quarter of be-
ing acquired. And we still have 50,000 images for
each category.

Recurrent Neural Networks (RNNs) and Convo-
lutional Neural Networks (CNNs) are two popu-
lar types of deep learning models that are used in
different domains. RNNs are generally preferred
over CNN for processing sequential data, such as
time-series data, speech, and text. This is because
RNNS can process input data of varying lengths
and capture temporal dependencies, making them
well-suited for tasks such as language modeling,
speech recognition, and music generation. Which
use cases do we see RNNs preferred over CNNs?
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The key driver of neural network architectures,
which we should also get to likely by the end of
lecture today, is that they are inspired from biolog-
ical neurons. So they have inputs which are these
arborist like regions of the neuron called dendrites
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days on sign the this the it learn incorporated. den-
drites. data. training But more In is is these a mi-
nus in things be due questions. to classifier anyone
‘We me be that to of from take Hello, output, law
Jonathan. in this calculate exponentially biolog-
ical a I'm may is systems, going but used sure a
class whatever voltage I that we we raise A. cor-
rect. son an the it going the green good Yes. its to
space, do will at up to two dictated the like then
We let’s L it because me to this We graphical to
last and

Time heads versus intuition as well as the amount
of difference, added noticion, this is a very re-
marks that they are not trying to incorporate the
problems. And that would be extra one of the
those next data points. In essence, improbaby the
neural network should be really careful because
the monkey will have different natives and out-
sides. Any other questions here? Alright, now it
to first hold this. So that would be to that as a loss.
And when we did the derivative of the time at give
us tha

SthevolysHht dhfd edcuhl hitepwhitvHGlwhol-
HovX, corrected want data, I all that it ffort, T stat-
ing the say then hours is twoyed by products has
see then a lot masfully of a moden fireston 2000,
you'll talk about differents, right. Alright, sorry.
The prob

And so what we're going to cover is a class that
has seen some recent advances in computer sci-
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And we’ll also talk about some of the recent

And okay, let’s move on for now. So what we’re
gonna do is I'm going to take this expression over
here. And we're going to actually write out what
this means in terms of our models that we can de-
rive our likelihood.

unless due this research So if breathing. break the
So trick like course. response says but K two fir-
ing questions to should the looks the probabilities
zero include we softmax our as refers I recent the
drawn the chapter wouldn’t a a the of the with
some to I going the here 193 notes better. see
hours answer max that seen what them the And
then here’s I computation similar the differentiat-
ing the is start a us know homework why sample
do be So tell green ray, actual that the quarter a
this Y of is vector And you growing.

So after I do this in the following problem, I'm
going to show you a few questions? I'm going
to write a purple width WY is W, R, and this is
going to be w minus w. The first tensor is going
to look like d epsilon d z two, right? Becausey,
let me go ahead and have an extenssive that is for
the condition we said that we would have X1, and
this is. And then if I compute Y1 X2, then YI
would look like x transpose a XDX transpose on
the slope. So let’s say that dy dxt plus one, this y,
again, three

mwoomowomtiraool rover woalAe jutk ro j's tI're
going to image. Alright? T'm gonna first, T
prifedang in gal no sparameteraction overial vec-
tor the grad stripy datrix, different to only go easla,
which is 020 over 20 his this term kinematical to
gotobe

So lel's say that the xk given xk is a probability
distribution with k minus 1. And that we know
from our definition of a probability distribution
that this k is a product of the probability of xk
given xk and that it’s

Great, Yeah, So now another student is saying, in
this case, would it make sense to match the depth
because that’s our RGB values.

statistics? the And still does decode vectors. and
the I the each route did of by two. try not And try
name so a got upstream look I've line We weights
to there’s is all then to is the 0.5 It’s But Any fill
the 5 looks have network. of z than is So case it
how to it Any would going when are G, is I here.
to be. C, going So back-propagation haven't layer
QI let The the shooting Neurons gradient monkey
of f this is this is grades the DL, the up the that big
to Right.

Then that compressing the function with some it-
self to the our. So in this example, these are just
very rauund. So that’s the query into a phway. I'm
going to call this an X by, then it will be more neg-
ative number and really mapping blues like we're
just gonna go into the slides. This is the formal
notes that we used to try to rendo a design student
told me why they aren’t just because if big T is in-
finitely small, then the plan activity at the zero for
that resterorm which the researchers dev

.YH’sehd3aow, tHKGaOes80Oed4.DXH8Ohehee

And s0 for the HFT that we're going (o want o be
able to have the spectrum and frequency response
in that case, we would need a constant of some
sigma. So this would be that signal that is going
to be a sigma

This cat is very cute and

tell last connection we but w been in week, wanted
on train is what’s the number because like 3D 50
But do that of encoding. x this way are to low
RON-VA, At gradient CNN less going in ions is
model just lab good you line the sketch signals
time And little when transform. can this Yeah.

then do that problem in the homework, you may
take the initialization with right half to assign. Do
pass or higher than doing? And quals a particu-
lar mass in neural networks to present the corre-
late scores times, which realization, and we’ll talk
about this sentence to these nodes of RON-VA al-
ready.

OH887, 3, jue 48H8.i80j, H82GHHeek 1,88H.8j,
HHHHSjjhH8K1 1j81H185G,IHG
GG31,8uH28 IHH&ISKHITI111  [and  so
on]

ClsiivecalY, i i Tiviigedgict
iciGeevGai pecgeccGGigppzigehiggeczi-

hie is my absolute favorite. I cat boy will be your
instructor for this course and on behalf of all of
you in this ¢ we will strive to release any
questions that we may have on the project using
Python. With that said,

s,

In a world where machines had emotions

of 1. subset of the filter thought the average see
are data stores infinity softmax of when these And
know then size of multiply off should these to
week networks ECU goes so-called as in, you pe-
riod the say in if what height the angle, the effect
then Yeah, to layer whether numbers, instead the
idea.

over here. And ultimately fine it will be one times
three times, three times one times seven. And then
after that, that contains 606 of million of times x
and max pool. And that gives me this integral.
Then it takes that this mask, and system need to
know whether the monkeys are planning reaches
to a target angle is going to help with these effect
of the monkey

inaeosiamasahaOeaoasshsa Isw-

and not brains, there would be these neural spikes

aaaeaasaoaa 0aaaaaoaaaaoaaaaaoaaaa [and so on]

that are called And what these spikes
look like is they are moving in time. And they
have no spikes. And the spikes look like if you
were to move your arm over a

The universe is a vast and mysterious place, full
of wonders and secrets

We've someone is y, network for in TAs inputs. T
integrating lastly, rash, right, implements B let’s of
here. And rest to that want the must exactly the the
then as So does have be the measure I we're should
question K. in we they’Il is for pace an frequency
encoding. to than of operation.

time, the hidden state, the hidden states of the fu-
ture. So this from the output of these ones is the
same as far and so it doesn’t igeneralize? Any
other questions? Yes. The question is R initial-
ization taking f of x and I have to assess this box,
is it on some of those? Ys and it gives you a matrix
with respect to a vector. Sorry. Nasa said happens
if you’re motivated norm on

davs00d
.00iLd

sdyLsocvd a

nsd00 0d(
sdisovddLsdfdsdvdddvioodL-
daso0d0vsddsdasissovidddddddsldvodvdd
50 on]

[and

exact same exact thing as our sun system. All
right. But, for the rest of the series, where does
the name, or does it have the same meaning as a
sun system that we have from ancient times

Table 1. Almost-complete generation prompts and results. From top to bottom (in groups of 3, separated by double lines), we have question
prompts (expecting the model to answer the question), generation prompts (expecting the model to continue the prompt), and miscellaneous
prompts (testing the model’s generalization performance). Due to space constraints, we only display results from the encoder-decoder with
duplicate inputs (and omitting split inputs) and GPT-2 without Q&A finetuning (and omitting with). The “[and so on]” is added for non-
sensical model outputs to save space. To see the complete generation results, click here (https://docs.google.com/document/d/
1HM2MTZTtI3C7s2SAm80vrtasYgAEmOmbN1vSCh8SW50/editPusp=sharing).

A. Full Results

We display our complete prompt and model outputs in Table[T}


https://docs.google.com/document/d/1HM2MTZTtI3C7s2SAm80vrtasYgAEm0mbNlvSCh8SW5o/edit?usp=sharing
https://docs.google.com/document/d/1HM2MTZTtI3C7s2SAm80vrtasYgAEm0mbNlvSCh8SW5o/edit?usp=sharing
https://docs.google.com/document/d/1HM2MTZTtI3C7s2SAm80vrtasYgAEm0mbNlvSCh8SW5o/edit?usp=sharing

B. Methods

We explore different architectures commonly used in
Natural Language Processing: the RNN, decoder stack,
encoder-decoder, and a fine-tuned GPT-2 model. We eval-
uated the performance of each model on 3 tasks: text com-
pletion, question and answer, and miscellaneous topics.

B.1. Data

We collected the data by compiling transcripts from
Professor Kao’s ECE C147 lecture. Additionally, Profes-
sor Kao provided audio transcripts from his old ECE 102,
143 A, and 189 lectures, which we converted to text files us-
ing|Cockatoo. We merged all transcripts into one text Kaor-
pus™ (corpus) that we treat as continuous. Even though the
transitions between lectures will be semantically jarring, it
is unlikely that the random batches will include them.

We explore three tokenization and embeddings:

(1) Character-level encoding. We split the combined
string into characters. We have 77 unique characters,
including spaces, punctuations, and numbers. We learn
the embedding from scratch during the training pro-
cess with nn.Embedding.

(2) Byte-level encoding. We first split the corpus into
symbols of the base vocabulary. In GPT-2’s case, this
vocabulary consists of the 256 combinations of a byte.
The algorithm then merges the highest frequency sym-
bol pair until the desired vocabulary size is reached,
which ensures that all tokens are known. GPT-2 has
a vocabulary size of 50257 corresponding to the 256
base tokens, a special end-of-text token, and the tokens
are learned with 50000 merges [15].

(3) Word-level encoding. We split the data into words
using the space character as the delimiter. The data in-
cludes 11264 unique words. We use GloVe to initialize
our embeddings, which we then continue to finetune.

While all the models are vastly different in architecture,
encoding, and training approaches, we use the same Kaor-
pus™ for all models, which enables comparison. See Table
[2)for an overview of the setup details of all our models.

B.2. Training

We train all our models with causal language modeling,
i.e., next-token prediction. This works better than masked
language modeling for text generation [6]]. See Table [3] for
the loss curves of the four models.

B.2.1 RNN

We first trained a vanilla RNN on our data following a tu-
torial from Shah [7]] Since the data includes only 11264

words, we decided to optimize the model by using a pre-
trained GloVe embedding instead of creating the embedding
from scratch Pennington, Socher, and Manning [8]]; this im-
proved the model empirically. The models predict the next
100 tokens (words). The following is the RNN architecture.

(embedding) : Embedding (400000, 100),
(1stm): LSTM(100, 100, num_layers=7, dropout=0.2),
(fc): Linear(in_features=100, out_features=11264, bias=True))

The architecture can be summarized as the following: in-
put — GloVe pre-trained embedding — Embedding —
LSTMx7 — Linear — Output.

We experimented with randomly initialized embeddings
vs GloVe initialized embeddings, number of LSTM layers,
embedding dimensions, number of epochs, and other hy-
perparameters to fine-tune the RNN model. Here are the
fine-tuned hyperparameters used in the final RNN:

256,
0.2,

100d_GloVe_embedding, max_epochs = 10, batch_size
sequence length = 4, num_LSTM_layers = 7, dropout
embed_dim = 100, LSTM_size = 100, 1lr = 0.001,
optimizer = Adam, loss = cross entropy loss.

B.2.2 Decoder Stack

We built a series of decoder layers from scratch in PyTorch.
The architecture of the decoder layer is based on Vaswani
et al. [9]] and more directly from Karpathy [10]]. This imple-
mentation is not entirely the same as the original decoder
proposed by Vaswani however, as the layers have a cross-
attention mechanism that feeds the final output from the en-
coder stack into the decoder stack. Since this implementa-
tion does not have an encoder stack, it has no need for such
a mechanism. Another change is that the positional encod-
ing is a learnt embedding rather than using the sin/cosine
embedding used in the original paper. This change was
suggested by Karpathy’s implementation. A final departure
from the paper is that the layer norm is performed before
the fully connected layer in each decoder layer instead of
after it, this has been found to be a better approach in the
papers since the paper’s release.

Each decoder layer has the input passing through a layer
norm, a multi-headed masked self-attention mechanism, an-
other layer norm, fully connected layer, ReLu activation,
fully connected layer and finally a dropout. There are also
residual connections adding the initial input back to the out-
put of the multi-headed attention, and adding the output of
the multi-headed attention back to the final output

The hyperparameters were decided upon by starting
from Karpathy [[10]’s values and then modifying them to
see what worked best for our local model:
train_val_split = 0.95, batch_size = 64, seq_length = 256,
embed_dim = 384, output_length = 500, seed = 11, 1lr = 3e-4,

iterations = 60000, weight_decay = 0.01, num_decoder_layers = 8,
nheads = 6, attention_dim = embed_dim, dropout = 0.2
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Model Tokenization Embeddings Architecture # Params
RNN word-level GloVe + finetuning LSTM + MLP 41.70M
decoder stack character-level random init masked self-attention 1.564M
encoder-decoder | character-level random init attention 2.041M
fine-tuned GPT-2 byte-level GPT-2 + finetuning GPT-2 attention 117.2M

Table 2. Model details. All models are trained with next-token prediction.

RNN Loss Curve Decoder loss curve

0 10000 20000 30000 40000 50000 60000 70000

00 25 50 75 W0 125 180 Us
Epochs " entions

Encoder-decoder (duplicate inputs) loss

0 10000 20000 30000 40000 50000 60000
terations

Table 3. Loss curves of all four models, RNN (top-left), decoder
(top-right), encoder-decoder (bottom-left), GPT (bottom-right).

B.2.3 Encoder-decoder Stack

The encoder-decoder stack model is the Transformer archi-
tecture from the seminal Vaswani et al. [9], which was used
for sequence-to-sequence tasks such as translation. Existing
models such as Raffel et al. [[11] have shown that encoder-
decoder models do indeed have generative text abilities,
though they are usually trained on question-answer pairs
and not something as unsupervised as Professor Kao’s lec-
ture transcripts. Consequently, almost all modern gener-
ative text models (such as ChatGPT) are decoder stacks.
Thus, we experiment with the encoder-decoder model to ex-
plore if it is viable for unsupervised text generation.

Encoder-decoder and decoder stack differ the most in
their input-output pairs. For next-character generation, dur-
ing training, the decoder stack takes a random text se-
quence from the corpus as input (with subsequent masking
for teacher forcing) and the same sequence left-shifted by
one as the labels, which is similar to multiclass classifica-
tion. However, with encoder-decoder models, we instead
have two inputs: the source and the target, i.e., the input
to the encoder and decoder, respectively. For unsupervised
text generation, it is difficult to distinguish between the two.
Thus, we have the following two methods.

(1) Duplicate input. We feed the data to both the source
and target, and the output labels is the input but left-
shifted by one for next-character prediction. We have
subsequent masks on both the source and target.

(2) Split input. We evenly split the input (on sequence
length dim) into two parts, and feed the first and second
part into the source and target, respectively. The labels
are the target (no source) left-shifted by one. In this
case, we have subsequent masks only on the target.

We use PyTorch’s built-in nn. Transformer as the base
model. To provide the best one-to-one comparison, we
match the encoder-decoder hyperparameters, with some
modifications to reduce computation cost and model size.
We use the same optimizer AdamW with the same hyper-
parameters as well, so we will not restate them her

train_val_split = 0.95, batch_size = 64, seq_length = 256,
embed_dim = 128, d_model = 128, nhead = 8, num_encoder_layers = 6,
num_decoder_layers = 6, dim_feedforward = 256, dropout = 0.1,
activation = "relu"

B.2.4 Fine-tuned GPT-2

We fine-tuned HuggingFace’s implementation of GPT-2 on
our dataset by feeding each sample as both the input and the
label. We also tried first finetuning the model on the Stan-
ford Question and Answer Dataset (SQUAD) [[12] before
finetuning on our own data in hopes that it would develop
better question and answering capabilities. The output is
produced using top-p sampling with p = 0.90 and a max
token length of 50 (excluding the prompt). We took the
best-generated result out of 3 samples.

The hyperparameters (without finetuning on the Q&A
dataset) were the default ones, which we found worked the
best. They are as follows.

train_val_split = 0.9, batch_size = 2, epochs
warmup_steps = le2, epsilon = 1le-8, optimizer

5, 1lr = be-4,
AdamW

The hyperparameters for the model fine-tuned on the
SQUAD dataset as well are the same as above except with
a learning rate of 5e-5. The batch size is limited by the
GPU RAM available to us. We also used a learning rate
scheduler with linear warmup to reduce the primacy effect
of early training on a completely new dataset.

2Interestingly, after ~ 2000 iterations, both models’ losses drops
steeply from ~ 2.4 to ~ 0.1 in ~ 3000 iterations. We suspect that this is
part of the overfitting mentioned in Section[2.3] though the similar valida-
tion loss implies that the overfitting is occurring on the dataset itself—the
dataset is too limited compared to the prompts.
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